4 research outputs found

    The VISIR+ Project – Preliminary results of the training actions

    Get PDF
    Experimental competences allow engineering students to consolidate knowledge and skills. Remote labs are a powerful tool to aid students in those developments. The VISIR remote lab was considered the best remote lab in the world in 2015. The VISIR+ project main goal is to spread VISIR usage in Brazil and Argentina, providing technical and didactical sup- port. This paper presents an analysis of the already prosecuted actions regarding this project and an assessment of their impact in terms of conditioning factors. The overall outcomes are highly positive since, in each Latin American Higher Education Institution, all training actions were successful, the first didactical implementations were designed and ongoing in the current semester. In some cases, instead of one foreseen implementation, there are several. The most statistically conditioning factors which affected the outcomes were the pre-experience with re- mote labs, the pre-experience with VISIR and the training actions duration. The teachers’ per- ceptions that most conditioned their enrollment in implementing VISIR in their courses were related to their consciousness of the VISIR effectiveness to teach and learn. The lack of time to practice and discuss their doubts and the fulfillment of their expectations in the training actions, also affected how comfortable in modifying their course curricula teachers were.info:eu-repo/semantics/acceptedVersio

    Una Federación de Laboratorios Remotos VISIR a través del Proyecto PILAR

    Get PDF
    Este documento describe cómo un nuevo proyecto Erasmus+, PILAR (Plataform Integration of Laboratories base don the Architecture of visiR), está siendo desarrollado y cómo la puesta en marcha del partenariado y del proyecto está reforzando la red VISIR (Virtual Instrument Systems in Reality) y el Grupo de Interés Especial de VISIR bajo el Consorcio de Laboratorios online (GOLC - Global Online Laboratory Consortium) de la Asociación Internacional de Ingeniería Online (IAOE - International Association of Online Engineering. La Universidad Española para la Educación a Distancia (UNED) coordina este proyecto que tiene como objetivo federar los sistemas existentes (o nuevos) con el fin de utilizar los recursos de manera más efectiva y eficiente, haciendo transparente para el usuario final la elección de los recursos compartidos.info:eu-repo/semantics/publishedVersio

    Chapter 1

    Get PDF
    Experimenting is fundamental to the training process of all scientists and engineers. While experiments have been traditionally done inside laboratories, the emergence of Information and Communication Technologies added two alter-natives accessible anytime, anywhere. These two alternatives are known as virtual and remote labs, and are sometimes indistinguishably referred as online labs. Sim-ilarly to other instructional technologies, virtual and remote labs require some ef-fort from teachers in integrating them into curricula, taking into consideration sev-eral factors that affect their adoption (i.e. cost) and their educational effectiveness (i.e. benefit). This chapter analyses these two dimensions and sustains the case where only through international cooperation it is possible to serve the large num-ber of teachers and students involved in engineering education. It presents an ex-ample in the area of Electrical and Electronics Engineering, based on a remote lab named Virtual Instruments System in Reality, and it then describes how a number of European and Latin-American institutions have been cooperating under the scope of an Erasmus+ project2, for spreading its use in Brazil and Argentina.info:eu-repo/semantics/publishedVersio

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore